String-coupled pendulum oscillators: Theory and experiment
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A coupled-oscillator system is given which is readily set up using only household materials.
The normal-mode analysis of this system is worked out, and an experiment or demonstration
is recommended in which one verifies the theory by measuring two times and four lengths.

There is a definite fascination to coupled oscillations,
but it is hard to find a mechanical system which is both easy
to build and easy to analyze. A system of one-dimensional
alternating springs and masses, for example, (three springs
and two masses) is easy to analyze, but not easy to build.
The coupled-oscillation system of Fig. 1, however, is trivial
to construct, and not too hard to analyze. It is made from
light string or thread, and two equal masses (any small
household object of 20 g or more will do nicely). As long as
all lengths are at least 10 cm, torsion in the string will be
negligible, and the theory given below will be accurate. The
intended oscillations of this system are in and out of the
plane of the paper.

The experiment itself is simple because a comparison to
the theory requires measuring only two times and four
lengths; the time T for a single energy transfer, the period
T, of pendulum-mode motion (both pendula swing to-
gether), and the lengths [, /,, L, and d. The author has had
his junior mechanics students build, measure, and analyze
this system for the past two years, as part of a homework
assignment on coupled oscillations. Most students did the
work at home or in their rooms, although a few elected to
set up the experiment at school. Each selected his own scale
and masses, with results typically agreeing with the theory
to about 5%.

The analysis begins by assuming negligible mass at points
pi1 and p in Fig. 1(b), so that the sum of all forces acting
at point p; will be zero, and the same will be true at p,.
These forces are tensions, and each is parallel or antiparallel
to one of the length vectors in Figure 1(b). The tensions are
therefore proportional to length vectors, the coefficients
having dimensions of force and length. Force equations at
p1 and p, are now written

—td+d+T\L, =0,
and
trdy —td+ 7oL, = 0. (n

When the system is not in motion, these equations are easily
solved:

TWL=T)L=mg soT, =T,
and
til, =T\L=1,l, 50t =t
and also
4, =1d. (2)

All coefficients are thus known in terms of mg and lengths.
In the rest of the analysis, they are presumed to stay close
to these values, even when there is small-amplitude mo-
tion.
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The origin of coordinates is now chosen at P in Fig. 1(b),
so that the vector from P to the center of mass of one pen-
dulum is d + L;, and the vector from P to the otheris D —
d, + L,. Newton’s second law for each pendulum is then

mg — T1Li = m(d, + Ly),
and
mg — ToLy = m(—d> + Ly). (3)
Adding Egs. (3) gives
2mg— Ti(Li+ L) =m(d —dy+ L, +Lo). (4

We eliminate the d; — d, term from (4) by adding Egs. (1)
and differentiating twice with respect to the time. This re-
sults in

2mg—Ti(Li+Ly) =m (1 + T;/t,))(L, + Ly). (5)

We release the pendula of Fig. 1(a) to move primarily
perpendicular to the plane of the page, so that both L, and
L, should have oscillating y components. Taking the y
component of (5) shows this to be the case for the sum of
their y components, @1 = Ly, + Ly:

Ql -*_"Vl2 Q] =0a (6)
where
2_&( ﬂ)‘l — g __ 8
wi=l A\t LO+L)L) L+LD)

Equation (6) is the familiar oscillator equation, and w) is
a familiar oscillation frequency: pendula swinging together
about line PP’ have an effective length of /; + L, and a
circular frequency w? = g/(I, + L). Q) can thus be claimed
as one of the normal modes of this system.

Fig. 1. (a) String-coupled
pendulum oscillators. (b)
Vector diagram.
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We anticipate the second normal mode as Q, = L;, —
Ly, since we have just noted L, = L,, when only mode 1
is active (and so Q, must be zero during this time). This
leads one to subtract Egs. (3) and get an equation in the
quantity L; — L,, which also contains a quantity (d; + d,).
This latter combination can be written in terms of a single
variable using the condition thatd, + d + d, = D:

(d2 +dy) = —d. (7
And the single variable d, in turn, can be eliminated in favor
of L; — L, by using Eqs. (1) and (7) to yield a final oscil-
lator equation:
T,
~Ty(Li—Ly) = <1 + —)
L1 —Ly)=m T+
When only this mode is active, @) = 0,and L, = ~L,,, so
that the pendula are oscillating 180° out of phase. The
frequency of this motion is
T] = w
ml+T/Qt+t)] 1-x’

= () ()

(L — Ly).

2

W=

where
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When we start the system from rest, with one pendulum
displaced, and the other hanging vertically, both modes are
present in equal amounts. As standard treatments show,!
the “frequency” for energy transfer is half the difference
in the mode frequencies. The time T for a single energy
transfer is one quarter of the “period” for energy transfer,
so we relate this and the mode | period T, by

T,/T=2[(1-x)""2=1]=x (forx<<1). (8)

Thus, the ratio of times depends only on x, which is calcu-
lated from two length ratios.

Equation (8) has been borne out to better than 5%, and
within experimental accuracy in a number of cases. The one
place where it failed, however, was the first system mea-
sured: a desktop “toy” which inspired the analysis. The
calculated coupling was too low, and apparently the little
pendula were so close (4 cm) that the string provided tor-
sional as well as tensional coupling.
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